

Funções inorgânicas: óxidos, bases, sais e ácidos

Resumo

Óxidos

Óxidos são compostos binários (2 elementos) nos quais o oxigênio é o elemento mais eletronegativo.

Por exemplo: H_2O , CO_2 , Fe_2O_3 , SO_2 , P_2O_5 etc.

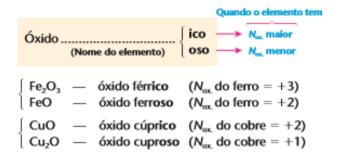
Existem compostos binários com oxigênio onde ele não é o mais eletronegativo, então não pode ser considerado um óxido, são eles:

 OF_2 e O_2F_2 que são considerados sais, pois nesse caso o flúor é o elemento mais eletronegativo, saindo assim da definição de óxidos.

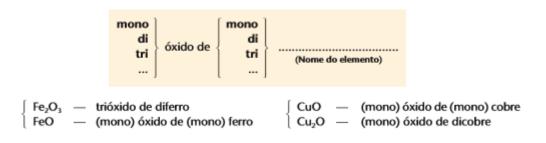
Classificação dos óxidos

1) Óxidos básicos: São óxidos que reagem com a água, produzindo uma base, ou reagem com um ácido, produzindo sal e água, geralmente óxidos onde o metal tem nox +1,+2 ou +3.

Exemplo:


$$Na_2O$$
 + H_2O \longrightarrow 2 NaOH Na_2O + 2 HC ℓ \longrightarrow 2 NaC ℓ + H_2O

Nomenclatura dos óxidos básicos


Quando o elemento forma apenas um óxido, nomeamos com a palavra óxido + o nome do elemento, exemplo:

Caso o elemento forme mais de um óxido (nox variável), acrescentamos o sufixo **ico(maior nox)** ou **oso (menor nox)** ao nome do metal em questão, exemplo:

Podemos representar também com nome escrito com algarismos romanos:

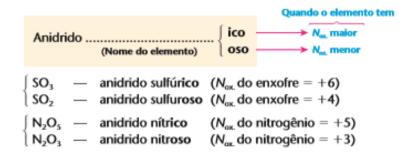
Outra forma de nomear os óxidos é usando algarismos romanos, exemplo:

Fe₂O₃: Óxido de ferro III FeO: Óxido de ferro II CuO: Óxido de cobre II Cu₂O: Óxido de cobre I

2) Óxidos ácidos ou anidridos: São óxidos que reagem com a água, produzindo um ácido, ou reagem com uma base, produzindo sal e água, onde o nox do metal (nox possíveis: +5, +6 ou + 7) ou com qualquer ametal (excluindo os ametais dos óxidos neutros).

Exemplo:

$$SO_3$$
 + H_2O \longrightarrow H_2SO_4
 SO_3 + 2 NaOH \longrightarrow Na_2SO_4 + H_2O


O nome anidrido vem do fato desse tipo de óxido ter a capacidade absorver água e forma seu respectivo ácido.

Exemplo: $SO_3 + H_2O \rightarrow H_2SO_4$

Anidrido sulfúrico, óxido de enxofre IV ou trióxido de enxofre + água \rightarrow Ácido sulfúrico

Nomenclatura dos óxidos ácidos

Obs₁: Quando o elemento possuir 4 anidridos diferentes, ou seja, 4 nox diferentes

Nox+1: Anidrido Hipo....oso

Nox +3: Anidrido....oso Nox +5: Anidrido....ico

Nox +7: Anidrido Per....ico

Exemplos:

Cl₂O: Anidrido Hipocloroso

Cl₂O₃: Anidrido cloroso

Cl₂O₅: Anidrido clórico

Cl₂O₇: Anidrido Perclórico

Obs₂: Quando o óxido tem apenas um um anidrido, usa-se a terminação ico.

Exemplo:

CO₂ - anidrido carbônico

B₂O₃ – anidrido bórico

Obs₃: Podemos usar a terminação já citada utilizando números romanos ou os prefixos mono,di,tri...

Obs₄: Alguns anidridos podem reagir com quantidades crescentes de água (hidratação crescente), produzindo ácidos diferentes. É o caso do anidrido fosfórico (P_2O_5).

$$P_2O_5$$
 + 1 H_2O \longrightarrow 2 HPO $_3$ (ácido metafosfórico)
 P_2O_5 + 2 H_2O \longrightarrow $H_4P_2O_7$ (ácido pirofosfórico)
 P_2O_5 + 3 H_2O \longrightarrow 2 H_3PO_4 (ácido ortofosfórico)
Hidratação crescente

3) Óxidos anfóteros: Podem se comportar ora como óxido básico, ora como óxido ácido, onde o metal pode ter nox +3 ou +4(exceção do Zn,Pb,Sn) ou o oxigênio estar ligado a um ametal(excluindo os ametais dos óxidos neutros).

$$ZnO$$
 + 2 HC ℓ \longrightarrow $ZnC\ell_2$ + H $_2O$

Oxido básico Ácido forte Cloreto de zinco

2 NaOH + ZnO \longrightarrow Na_2ZnO_2 + H $_2O$

Base forte O xido ácido Zincato de sódio

Os óxidos anfóteros são, em geral, sólidos, iônicos, insolúveis na água. Os mais vistos em provas ou vestibulares são:

ZnO; Al_2O_3 ; SnO; SnO_2 ; PbO; PbO₂; As_2O_3 ; As_2O_5 ; Sb_2O_3 e Sb_2O_5 .

Nomenclatura dos óxidos anfóteros

A nomenclatura é idêntica à dos óxidos básicos:

ZnO -óxido de zinco

SnO₂ -óxido estânico ou óxido de estanho IV, ou dióxido de estanho

SnO -óxido estanoso ou óxido de estanho II, ou (mono) óxido de estanho

4) Óxidos neutros: São óxidos que não reagem com água, nem com ácidos nem com bases. Existem muito poucos óxidos com essa classificação, os exemplos mais comuns são:

CO - monóxido de carbono

N₂O -óxido nitroso

NO - óxido nítrico

Obs: Muitos autores consideram a água(H₂O) um óxido neutro.

5) Óxidos duplos, mistos ou salinos: São óxidos que se comportam como se fossem formados por dois outros óxidos, do mesmo elemento químico, onde seu nox equivale a 8/3.

Exemplo:

$$Fe_3O_4$$
 equivale a FeO + Fe_2O_3
 Pb_3O_4 equivale a 2 PbO + PbO₂

Para dar nome aos óxidos duplos, mistos ou salinos, devemos seguir esta regra:

Tetraóxido + de + nome do elemento + tri = nome do elemento ligado ao Oxigênio

Exemplos:

Fe₃O₄ = Tetraóxido de triferro

Pb₃O₄ = Tetraóxido de trichumbo

Mn₃O₄ = Tetraóxido de trimanganês

6) Peróxidos: São óxidos que reagem com a água ou com ácidos diluídos, produzindo água oxigenada (H₂O₂). Exemplo:

$$Na_2O_2$$
 + $2 H_2O$ \longrightarrow $2 NaOH$ + H_2O_2
 Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2

A nomenclatura é feita com a própria palavra peróxido. Por exemplo:

Na₂O₂ - Peróxido de sódio

E os peróxidos mais comuns são os de hidrogênio, e utilizando metais da família 1A e 2A.

7) Superóxidos: São óxidos onde o nox do oxigênio é -½ (ao invés do comum -2), além de serem formados por esses compostos são formados por metais alcalinos e metais alcalinos terrosos.

A nomenclatura dos superóxidos baseia-se na seguinte regra:

Superóxido + de + nome do elemento que acompanha o oxigênio

Exemplo:

K₂O₄: Superóxido de potássio

Na₂O₄: Superóxido de sódio

CaO₄: Superóxido de cálcio

MgO₄:Superóxido de magnésio

SrO₄: Superóxido de estrôncio

Bases

Definição

Segundo Arrhenius, são substâncias inorgânicas que quando colocadas em presença de água sofrem dissociação iônica, liberando como único ânion a hidroxila (OH⁻).

$$XOH \xrightarrow{H_2O} X^+ + OH^-$$

Classificação

Quanto ao número de hidroxilas

Em função do número de hidroxilas(OH) liberadas quando sofrem dissociação iônica, uma base pode ser classificada como:

- Monobase - libera uma ânion OH

Ex.: NaOH
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺+ OH⁻

-Dibase - libera dois ânions OH-

Ex.:
$$Mg(OH)_2 \xrightarrow{H_2O} Mg_2 + 2 OH^2$$

- Tribase - libera três ânions OH-

Ex.: Al(OH)₃
$$\xrightarrow{H_2O}$$
 Al⁺³ + OH⁻

- Tetrabase - libera quatro ânions OH-

Quanto à solubilidade em água

Solubilidade de uma base é a propriedade que indica o quanto uma base é capaz de se dissolver em água, ela pode ser classificada como:

- Solúvel Possui grande capacidade de se dissolver em água. São as bases formadas por elementos da família IA e NH_4^+ .
- Parcialmente solúvel Pouco capaz de se dissolver em água. São as bases formadas por elementos da família IIA.
- Insolúvel Não é capaz de se dissolver em água. São as bases formadas pelos demais elementos.

Quanto à força

A força de uma base é dada pela sua capacidade de liberar OH⁻ (sofrer dissociação iônica) quando colocadas em presença de água, quanto maior a quantidade de OH- liberados, maior será a força da base.

- Forte São as bases formadas por elementos do grupo 1 e 2
- Fraca São as bases formadas pelos demais elementos.

Importante: As bases formadas por $Mg(OH)_2$ e $Be(OH)_2$, que são elementos do grupo 2, são consideradas insolúveis e fracas.

Nomenclatura

- Elementos com NOX fixo:

Família IA, IIA, Ag., Zn., Cd., Al. e NH..

Hidróxido de nome do elemento

Ex.:

NaOH -Hidróxido de sódio

Mg(OH)₂- Hidróxido de magnésio

Al(OH),- Hidróxido de alumínio

- Elementos com NOX variável:

Fe, Co, Ni = +2 ou +3

Cu, Hg = +1 ou +2

Au = +1 ou +3

Pb, Pt, Sn = +2 ou +4

Hidróxido de nome do elemento + NOX(em romanos)

ou

Hidróxido de nome do elemento + sufixo OSO (menor NOX) / sufixo ICO (maior NOX)

Ex.:

CuOH - Cu com nox +1 -Hidróxido de cobre I ou Hidróxido cuproso

Cu(OH),- Cu com nox +2 - Hidróxido de cobre II ou Hidróxido cúprico

Pb(OH),- Pb com nox +2 -Hidróxido de chumbo II ou Hidróxido plumboso

Pb(OH).- Pb com nox +4 -Hidróxido de chumbo IV ou Hidróxido plúmbico

Formulação das bases

Quando precisamos montar a fórmula de uma base a partir de seu nome, basta unir o cátion desejado ao ânion OH⁻.

Note que a carga total do OH⁻ deverá anular a carga total do cátion.

Ex.:

Hidróxido de cálcio

Ca⁺² e OH

logo para anular a carga +2 do cálcio precisamos de 2 ânions OH

 $Ca^{+2} + 2OH \rightarrow Ca(OH)_2$

Hidróxido férrico

Fe⁺³ e OH

logo para anular a carga +3 do ferro precisamos de 3 ânions OH

 $Fe^{+3} + 3OH \rightarrow Fe(OH)$

Ácidos

Definição

Segundo Arrhenius, são substâncias inorgânicas que quando colocadas em presença de água sofrem ionização, liberando como único cátion o H⁺.

Classificação

Quanto a presença de oxigênio

Inicialmente os ácidos podem ser separados em duas categorias para serem estudadas, os Oxiácidos (que possuem oxigênio em sua molécula) e Hidrácidos (que NÃO possuem oxigênio em sua molécula).

Ex.:

Hidrácidos = HCl, HF, HCN. Oxiácidos = H₂SO₄, HClO, H₃PO₄

Quanto ao número de H⁺

Em função do número de íons H* liberados quando sofrem ionização, uma ácido pode ser classificada como:

- Monoácido - libera uma cátion H+

- Diácido - libera dois cátions H+

Ex.:
$$H_2SO_4 \xrightarrow{H_2O} 2H^+ + SO_4^{-2}$$

- Triácido - libera três cátions H+

Ex.:
$$H_3PO_4 \xrightarrow{H_2O} 3H^+ + PO_4^{+3}$$

- Tetrácido - libera quatro cátions H+

Ex.: H₄SiO₄
$$\xrightarrow{\text{H}_2\text{O}}$$
 4H⁺ + SiO₄⁺⁴

Importante!

Os ácidos formados por P, As e Sb com fórmulas:

Quanto à força

A força dos ácidos é dada pelo seu grau de ionização (α). O grau de ionização é relação entre o número de moléculas dissolvidas sobre o número de moléculas que produziram íons.

$$lpha=rac{ ext{Número de moléculas ionizadas}}{ ext{Número de moléculas iniciais}}$$

TIPOS DE ACIDOS	GRAU DE IONIZAÇÃO
Forte	a > 50%
Moderado	$50\% \ge \alpha \ge 5\%$
Fraco	α < 5%

Os Hidrácidos mais comuns são classificados como:

Forte \rightarrow HCl, HBr e HI

 $Moderado \rightarrow HF$

Fraco \rightarrow os demais

Os Oxiácidos mais comuns são classificados da seguinte forma:

X = número de oxigênios - número de hidrogênios

Forte \rightarrow x > 1

Moderado \rightarrow x = 1

Fraco \rightarrow x < 1

Nomenclatura

Nomenclatura para Hidrácidos

Ácido nome do elemento + ídrico

Ex.:

HCI - Ácido clorídrico HI - Ácido lodídrico HCN - Ácido cianídrico

Nomenclatura para Oxiácidos

NOX*	PREFIXO	SUFIXO
+1 ou +2	hipo	oso
+3 ou +4	-	oso
+5 ou +6		ico
+7	per	ico

*NOX do elemento central

Cuidado!

 C^{+4} , Si^{+4} e B^{+3} = ICO

Ácido prefixo + nome do elemento central + sufixo

Ex.:

 H_2SO_4 - S^{+6} - Ácido sulfúrico H_3PO_4 - P^{+5} - Ácido fosfórico H_2CO_3 - C^{+4} - Ácido carbônico

Sais

Definição

Sal é toda substância, que em solução aquosa, libera pelo menos um cátion diferente de H⁺ e um ânion diferente de OH⁻.

$$XA \xrightarrow{H_2O} X^+ + A^-$$

Classificação

Sal neutro:

Não apresenta hidrogênio(H) ionizável e nem hidroxila (OH-) em sua composição.

Ex.:

NaCl, BaSO₄ e CaCO₃

Sal ácido ou hidrogenossal:

Apresenta H ionizável em sua composição.

Ex.:

NaHCO₃, KHSO₄

Sal básico ou hidroxissal:

Apresenta o ânion OH- em sua composição.

Ex.:

Ba(OH)Cl, Ca(OH)Br

Sal hidratado:

Possui moléculas de H₂O associadas ao seu retículo cristalino.

Ex.:

 $CuSO_4$. $5H_2O$

 $CaSO_4$. $2H_2O$

Sal duplo:

Sal que apresenta dois cátions diferentes (exceto o H ionizável), ou dois ânions diferentes (exceto OH-).

Ex.:

NaLiSO₄, AlSO₄I

Reação de neutralização

Um sal pode ser obtido através de uma reação chamada reação de neutralização, que consiste em:

ácido + base
$$\rightarrow$$
 sal + água

Ex.:

 $HCI + NaOH \rightarrow NaCI + H_2O$

Essa reação pode ocorrer de forma total ou parcialmente.

Neutralização total

Ocorre quando um ácido e uma base reagem e a quantidade de H⁺ do ácido é estequiometricamente igual a quantidade de OH⁻ da base.

Ex.:

óxido básico + ácido \rightarrow **sal + água** CaO + 2HBr \rightarrow CaBr₂ + H₂O

óxido ácido + base \rightarrow sal + água CO_2 + $2NaOH \rightarrow Na_2CO_3$ + H_2O

óxido ácido + óxido básico \rightarrow sal CO_2 + CaO \rightarrow $CaCO_3$

óxido anfótero + ácido \rightarrow sal + água ZnO + $H_2SO_4 \rightarrow ZnSO_4 + H_2O$

óxido anfótero + base \rightarrow sal + água Al_2O_3 + $2KOH \rightarrow 2KAlO_2$ + H_2O

Neutralização parcial

Ocorre quando um ácido e uma base reagem e as suas quantidade de H^+ e OH^- são estequiometricamente diferentes. Produzindo um sal ácido ou um sal básico

Ex.:

 $H_2SO_4 + NaOH \rightarrow NaHSO_4 + H_2O$ $HNO_3 + Mg(OH)_2 \rightarrow MgOHNO_3 + H_2O$

Nomenclatura

A nomenclatura de um sal será dada a partir do nome do ânion derivado do seu ácido formador.

Para derivados de hidrácidos:

<u>nome do ânion</u> + ETO de <u>nome do cátion</u>

SUFIXO ÁCIDO	SUFIXO SAL
ÍDRICO	ETO

Ex.:

NaCl → Cloreto de sódio KBr → Brometo de potássio

Para derivado de oxiácidos:

prefixo + nome do ânion + sufixo de nome do cátion

NOX*	PREFIXO	SUFIXO ÁCIDO	SUFIXO SAL
+1 ou +2	HIPO	080	ITO
+3 ou +4	-	080	ITO
+5 ou +6	-	ICO	ATO
+7	PER	ICO	АТО

* NOX do elemento central

Cuidado!

 C^{+4} , Si^{+4} e B^{+3} = ATO

Ex.:

BaSO₄ → Sulfato de bário NaClO → Hipoclorito de sódio CaCO₃ → Carbonato de cálcio

Formulação

 A^{x+} : cátion; B^{y-} : ânion. $A^{x+}_y B^{y-}_y \implies A_y B_x$

Ex.:

Nitrato de cálcio Ca^{+2} e NO_3 = $Ca_3(NO_3)_2$

Carbonato de magnésio Mg⁺² e CO₃⁻² = MgCO₃

Sulfato de sódio Na⁺ e $SO_4^{+2} = Na_2SO_4$

Cloreto de potássio K⁺ e Cl⁻ = KCl

Exercícios

1. O calcário é uma rocha constituída de CaCO₃ e muito utilizado na obtenção de cal viva (CaO) através da reação equacionada abaixo. A cal viva formada é aplicada em pinturas e em contato com a água forma a cal hidratada. Sobre o sistema proposto, assinale o que for correto.

$$CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$$

- (01) A cal hidratada é Ca(OH)₂.
- (02) O $^{\text{CaO}}$ é um anidrido.
- (04) Os nomes dos compostos CaCO₃ e CaO são, respectivamente, carbonato de cálcio e peróxido de cálcio.
- (08) A reação apresentada é uma reação de deslocamento ou simples troca.
- (16) O dióxido de carbono é um óxido ácido.

Soma: ()

2. Os derivados de petróleo e o carvão mineral utilizados como combustíveis podem conter enxofre, cuja queima produz dióxido de enxofre. As reações do dióxido de enxofre na atmosfera podem originar a chuva ácida. Sobre o sistema proposto, assinale o que for correto.

Dados:
$$H(Z = 1)$$
, $S(Z = 16)$ e $O(Z = 8)$.

- (01) A chuva ácida causa corrosão do mármore, do ferro e de outros materiais utilizados em monumentos e construções.
- (02) Na atmosfera, o dióxido de enxofre reage com o oxigênio e se transforma em trióxido de enxofre (SO₃).
- (04) O dióxido de enxofre e o trióxido de enxofre são óxidos básicos.
- (08) O único ácido formado na atmosfera é o ácido sulfúrico $(H_2 SO_3)$.
- (16) O ácido sulfúrico é classificado como ácido de Lewis, porque doa prótons na reação com uma base.

Soma: ()

3. A ferrugem é uma mistura de óxidos de ferro resultantes da corrosão desse metal. Outros óxidos metálicos, entretanto, ao contrário dos presentes na ferrugem, formam uma camada protetora sobre a superfície do metal. Um deles é o óxido formado pelo elemento químico do grupo 13, pertencente ao terceiro período da Classificação Periódica dos Elementos. Escreva a fórmula química desse óxido protetor e classifique-o quanto ao tipo de óxido.

4. O tratamento de água contaminada por metais pesados como ferro (III), chumbo (II) e cádmio, pode ser feito por alcalinização, que formam bases insolúveis desses metais. A alcalinização pode ser feita pela adição de cal ^(CaO) ou barrilha ^(Na₂CO₃).

A cal reage com água, formando uma base, e a barrilha sofre hidrólise, produzindo NaOH e um gás. Escreva a fórmula da base formada pela hidratação da cal e a fórmula do gás produzido pela hidrólise da barrilha.

5. Considerando as representações abaixo, assinale o que for correto quanto às ligações químicas desses compostos:

Dados:

```
H(Z = 1); O(Z = 8); S(Z = 16); C\ell(Z = 17);
 K(Z = 19); Ca(Z = 20); I(Z = 53).
```

- $_{\rm I}$ H_2S
- II. O₂
- III CaCℓ₂
- IV. KI
- (01) O composto III é um sal inorgânico formado por ligação iônica.
- (02) O composto II tem moléculas de geometria linear formadas por ligação covalente apolar.
- (04) O composto I é um ácido inorgânico com ligações do tipo covalente polar.
- (08) O composto IV, quando puro, é um líquido à temperatura ambiente e essa característica se deve ao tipo de ligação química apresentada.

Soma: ()

- **6.** Assinale o que for **correto**.
 - (01) Segundo Arrhenius, uma substância molecular dissolvida em água não pode conduzir corrente elétrica.
 - (02) Substâncias ácidas geralmente possuem sabor adstringente (amarram a boca) enquanto as bases possuem sabor azedo.
 - (04) O ácido fosforoso tem a fórmula ${}^{\text{H}_3\text{PO}_3}$.
 - (08) O ácido ortocrômico tem a fórmula $^{\text{H}_2\text{Cr}_2\,\text{O}_7}$.
 - (16) O ácido fluorídrico tem a propriedade de corroer o vidro.

Soma: ()

7. Alimentos estão sendo quimicamente adulterados por alguns fabricantes. Isso tem ocorrido a fim de baratear os custos de fabricação e de lucrar com as vendas ou por falhas no processo de envasamento do produto. Exemplo disso é o caso de um achocolatado que foi colocado no mercado com pH de 13,3 (básico), equivalente ao de produtos de limpeza, como soda cáustica (NaOH) e água sanitária (hipoclorito de sódio, NaClO_{aq}), sendo que o pH do achocolatado deveria estar próximo de 7 (neutro).

A partir dessas considerações, assinale o que for correto.

- (01) Em relação ao caso exemplificado, no processo de envasamento do produto, as tubulações foram lavadas com soda cáustica, uma base de Arrhenius que pode tornar o achocolatado básico.
- (02) O caso do achocolatado poderia ter sido evitado por meio de uma análise do produto, utilizando papel de tornassol (indicador ácido-base), sendo que o papel de tornassol vermelho, em contato com o achocolatado citado no texto acima, ficaria de coloração azul.
- (04) O óxido de cálcio (CaO cal viva) é considerado um óxido ácido.
- (08) Considerando que a basicidade do achocolatado deveu-se à presença de NaOH, essa basicidade pode ser neutralizada utilizando quantidade equivalente de ácido carbônico (H₂CO₃).
- (16) O leite é um dos alimentos que mais sofre adulteração química, e isso ocorre, algumas vezes, pela adição de água oxigenada, H₂O_{2(m)}, sendo que a adição dessa substância torna o leite ácido.

Soma:	()

8. A nomenclatura de um sal inorgânico pode ser derivada formalmente da reação entre um ácido e uma base. Assinale a coluna 2 (que contém as fórmulas dos sais produzidos) de acordo com sua correspondência com a coluna 1 (que contém os pares ácido e base).

COLUNA 1 COLUNA	
 Ácido nítrico com hidróxido ferroso. 	() NaNO₃
Ácido nítrico com hidróxido férrico.	() Fe(NO ₃) ₃
Ácido nítrico com hidróxido de sódio.	() Fe(NO ₂) ₃
 Ácido nitroso com hidróxido de sódio. 	() Fe(NO ₃) ₂
Ácido nitroso com hidróxido férrico.	() NaNO ₂

Assinale a alternativa que apresenta a sequência correta da coluna 2, de cima para baixo.

- **a)** 3, 2, 5, 1, 4.
- **b)** 3, 1, 2, 5, 4.
- **c)** 5, 4, 1, 2, 3.
- **d)** 4, 5, 2, 1, 3.
- **e)** 4, 3, 1, 5, 2.

9. Até os dias de hoje e em muitos lares, a dona de casa faz uso de um sal vendido comercialmente em solução aquosa com o nome de água sanitária ou água de lavadeira. Esse produto possui efeito bactericida, fungicida e alvejante. A fabricação dessa substância se faz por meio da seguinte reação:

$$C\ell_2 + 2NaOH \Rightarrow NaC\ellO(A) + NaC\ell(B) + H_2O$$

Considerando a reação apresentada, os sais formados pelas espécies A e B são denominados, respectivamente:

- a) hipoclorito de sódio e cloreto de sódio
- b) cloreto de sódio e clorato de sódio
- c) clorato de sódio e cloreto de sódio
- d) perclorato de sódio e hipoclorito de sódio
- e) hipoclorito de sódio e perclorato de sódio
- **10.** Associe as fórmulas aos seus respectivos nomes, numerando a coluna da direita de acordo com a da esquerda

()	carbonato de alumínio
	bissulfato de potássio
()	hidróxido de cobalto II
()	cianeto de cobre I
()	óxido de cromo III

- (1) KHSO₄ (2) CuCN
- (3) CaCO₃
- (4) FeS₂
- (F) C= O
- (5) Cr₂O₃
- (6) Al₂(CO₃)₃ (7) Co(OH)₂

A alternativa que contém a associação correta é:

- **a)** 6-1-7-2-5
- **b)** 8 1 7 2 5
- **c)** 3 6 7 4 1
- **d)** 8 6 4 2 5
- e) 6-4-2-3-7

Gabarito

1. 01 +16 = 17

(01) Correta. A cal hidratada é $Ca(OH)_2$.

$$CaO + H_2O \rightarrow Ca(OH)_2$$

(02) Incorreta. O CaO é um óxido básico.

$$CaO + H_2O \rightarrow Ca(OH)_2$$

- (04) Incorreta. Os nomes dos compostos ^{CaCO}₃ e ^{CaO} são, respectivamente, carbonato de cálcio e óxido de cálcio.
- (08) Incorreta. A reação apresentada é uma reação de decomposição ou análise.
- (16) Correta. O dióxido de carbono é um óxido ácido, pois misturado à água forma ácido carbônico.

2. 01 + 02 = 03

(01) Correta. A chuva ácida causa corrosão do mármore, do ferro e de outros materiais utilizados em monumentos e construções.

Por exemplo:
$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$$
.

- (02) Correta. Na atmosfera, o dióxido de enxofre reage com o oxigênio e se transforma em trióxido de (SO_3) : $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$.
- enxofre 2

 (04) Incorreta. O dióxido de enxofre e o trióxido de enxofre são óxidos ácidos, pois em contato com água formam estes tipos de compostos.
- (08) Incorreta. As reações do dióxido de enxofre na atmosfera podem originar a chuva ácida de ácido sulfúrico ou ácido sulfuroso.
- (16) Incorreta. O ácido sulfúrico é classificado como ácido de Bronsted-Lowry, porque doa prótons na reação com uma base.
- 3. O elemento químico do grupo 13, pertencente ao terceiro período da Classificação Periódica dos Elementos, é o alumínio: $[A\ell^{3+}]_2[O^{2-}]_3 \Rightarrow A\ell_2O_3$ (Óxido anfótero).

4. Teremos:

CaO_(s) +H₂O<sub>(
$$\ell$$
)</sub> \rightarrow Ca(OH)₂(ag)
Fórmula
da base

5. 01 + 02 + 04 = 07

- (01) Correta. O CaCl₂ é um sal inorgânico, que apresenta um metal em sua fórmula, sendo, portanto, um composto iônico.
- (02) Correta. O composto formado por ^O2[,] possui geometria linear (formado por 2 átomos apenas) e como são átomos iguais a ligação será covalente apolar.
- (04) Correta. O ácido sulfídrico é um ácido inorgânico, com geometria angular, cuja resultante será diferente de zero, portanto um composto polar.
- (08) Incorreta. O iodeto de potássio é formado por ligações iônicas, sendo assim, possui altos pontos de fusão e ebulição, sendo, portanto, um composto sólido a temperatura ambiente.

6. 04 + 16 = 20

- (01) Incorreta. Segundo Arrhenius, substâncias moleculares dissolvida em água, que sofram ionização, como os ácidos, podem conduzir corrente elétrica.
- (02) Incorreta. Substâncias ácidas geralmente possuem sabor azedo, enquanto que as bases possuem sabor adstringente.
- (04) Correta. O ácido fosforoso tem a fórmula ${}^{\text{H}_3\text{PO}_3}$.
- (08) Incorreta. O ácido ortocrômico tem a fórmula ${}^{ extsf{H}_2 extsf{Cr}\, extsf{O}_4}$.
- (16)Correta. O ácido fluorídrico tem a propriedade de corroer o vidro. Generalizando: $SiO_2 + 4$ HF \rightarrow $SiF_4 + 2$ H $_2$ O.

7. 01 + 02 = 03

Em relação ao caso exemplificado, no processo de envasamento do produto, as tubulações foram lavadas com soda cáustica, uma base de Arrhenius que pode tornar o achocolatado básico devido à liberação de ânions OH.

O caso do achocolatado poderia ter sido evitado por meio de uma análise do produto, utilizando papel de tornassol (indicador ácido-base), sendo que o papel de tornassol vermelho, em contato com o achocolatado citado no texto acima, ficaria de coloração azul.

O óxido de cálcio (CaO - cal viva) é considerado um óxido básico.

Considerando que a basicidade do achocolatado deveu-se à presença de NaOH, essa basicidade pode ser neutralizada utilizando a metade da quantidade de ácido carbônico (H₂CO₃).

O leite é um dos alimentos que mais sofre adulteração química, e isso ocorre, algumas vezes, pela adição de água oxigenada, H₂O_{2(ac)}, sendo que a adição dessa substância tem ação fungicida e bactericida.

8. A

- 1. Ácido nítrico com hidróxido ferroso.
 - HNO₃ + Fe(OH)₂
- 2. Ácido nítrico com hidróxido férrico.

HNO₃ + Fe(OH)₃

3. Ácido nítrico com hidróxido de sódio.

HNO₃ + NaOH

4. Ácido nitroso com hidróxido de sódio.

HNO₂ + NaOH

5. Ácido nitroso com hidróxido férrico.

HNO₂ + Fe(OH)₃

9.

Hipoclorito de sódio e cloreto de sódio

10. A

- (1) KHSO₄ Bissulfato de potássio
- (2) CuCN Cianeto de cobre (I)
- (3) CaCO₃ Carbonato de Cálcio
- (4) FeS₂
- (5) Cr₂O₃ óxido de cromo III (6) Al₂(CO₃)₃ Carbonato de alumínio
- (7) Co(OH)₂hidróxido de cobalto II